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Prague 6, Czechoslovakia 

(Received June 1 1, 1972) 

An equation has been derived describing possible shapes of the fracture curves which appear 
if two fracture fronts meet on the fracture surfaces of brittle amorphous materials. The 
characteristic forms of the curves are compared with the observed ones. The equation 
includes the following parameters : the centers distance of the primary and secondary 
fractures, the ratio of the spreading velocities of the fracture fronts originating in these 
centers, and the so-called activation distance, i.e. the distance of the primary fracture front 
from thecenter of the secondary front at a moment when the secondary fracture is activated. 
The fracture curves are divided into four groups according to the possible activation distance 
values. The shapes of the fracture curves described so far in the literature are shown to be 
special cases of the equation. The qualitative agreement between the theoretical and experi- 
mental fracture curves justifies the assumptions introduced while deriving the theoretical 
form. The determination of the parameter values can give new information on the fracture 
mechanism. 

I NTRO D U CTlO N 

When interpreting the lines on fracture surfaces it is assumed that the cracks 
in a brittle material propagate from two structural defects (fracture centers) in 
planes perpendicular to the direction of the acting force. If the distance 
between these planes is not too large, the material between the cracks is 
chipped out in a certain stage of destruction in such a way that the projection 
on the fracture surface thus obtained forms the so-called fracture curve.lI2 

So far, various types of fracture curves have been detected on the fracture 
surfaces of the brittle materials (straight lines and open conic sections,1-4>’1 

t Presented at the conference “General Principles of R heology”, Prague, September 

149 

11-14, 1972. 
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150 F. LEDNICK$ AND z. PELZBAUER 

closed cur~es,4~8-1~ the Wallner liness-'), but only some of them have been 
interpreted in mathematical terms (straight lines, open and closed conic 
 section^,^-^ the Wallner lines7). 

It has been the aim of the present paper to express theoretically the possible 
shapes of fracture curves, to characterize them in terms of a few basic para- 
meters, to classify the curves according to these parameters, and to indicate 
the physical meaning of the parameters. 

THEORETICAL PART 

Equation of shape of the fracture curve 

The equation of the fracture curve can be derived on the following assump- 
tions: (1) the fractures propagate from two points isotropically in planes 
perpendicular to the direction of the acting force, (2) the velocities of fracture 
propagation are independent of time. 

The scheme of formation of a fracture curve can be seen in Figure 1. Let us 
assume that the primary fracture spreads from the point P at a velocity v1 and 
that the secondary fracture starts spreading from the point S with a time lag 
t o  at a velocity v2. At a small difference, h (order of magnitude of microns), 
between the planes of the primary and secondary fractures (Figure la), 
the material is chipped out in the surroundings of the sites where the ground 
plans of the fracture fronts meet, and the projection formed on the fracture 
surface gives rise to a fracture curve, f (Figure 1 b). 

Besides the mechanism of mutual interaction of two fracture fronts, the 
origin of fracture curves can also be explained in terms of an interaction of the 
primary fracture front with the stress wave propagating from the point S. 
The fracture curves produced by both mechanisms can be described mathe- 
matically in a common way. 

In order to derive the equation of the curve f, we shall express the time 
dependences of the distances rl and r2 to which the primary and secondary 
fracture fronts will propagate from the points P and S respectively by 

r l  = v1 ( t + f o ) ,  (1) 

r2  = v2 t .  

The fracture curve consists of the points at which both the fracture fronts 
under investigation arrive simultaneously. At the same time, for each point M 
of the curve f, the geometrical condition 

d = r2 cos + + [r12 - (r2 sin +>2]* (3) 
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FIGURE 1 Scheme of formation of fracture curves (a) in a plane determined by points 
P,S and by the direction of the acting force; (b) in a plane perpendicular to the direction 
of the acting force. P is centre of primary fracture, S is centre of secondary fracture, f is 
fracture curve formed. Meaning of the other symbols can be seen from the text. 
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152 F. LEDNICK+ AND z. PELZBAUER 

is valid, involving quantities shown in Figure 1 b. On introducing the polar 
coordinates p 3 rz,  c j  (Figure lb) and ruling out the parameters t and rl 

from Eqs. (l)-(3), we obtain the equation of the fracture curve: 

p 2  11 - ( ~ 1 2 / ~ 2 2 ) ]  - 2p [ ( V ~ ’ / V Z )  t o  + d cos 41 - ~ 1 2 t 0 2  + d2 = 0. (4) 

To simplify the equation and analyze it, we introduce the parameters Vand 
a defined as follows : 

v = V l / V 2 ,  

u = d - ~ l t o .  

The parameter a shall be designated as the “activation distance”, since it 
represents the distance of the front of the primary fracture from the centre of 
the secondary fracture S at which the secondary fracture becomes activated 
(i.e. at the moment t = 0, as follows from Eqs. (1) and (2)). On substitution 
the equation becomes 

( 5 )  

p 2  (1 - V ) / d  - 2p [V(l - (a /d) )  + cos 41 + u [2 - ( ~ / d ) ]  = 0. (6)  

Classification of the fracture curves 

The form of the fracture curves according to Eq. (6) depends on the values 
of the three parameters d,V,a, of which d can be measured directly, and the 
other two can be calculated from the form of the fracture curve. We shall now 
investigate in which ranges of values the parameters have a physical meaning. 

The distance between the fracture centers, d, is in fact limited by the dimen- 
sions of the sample (0 5 d < 1, 1 being the longest possible distance on the 
fracture surface). For the subsequent mathematical analysis of the fracture 
curves, an approximate case d-rco, i.e. l / d  = 0, can also be used, if the 
highest value of the coordinate p of the curve is very low compared to the 
distance d. A solution to the trivial case d = 0 is represented by a circle 
with its center in the fracture center (P = S). We shall therefore assume in our 
further considerations that d can assume all positive values. 

The velocities ratio, V, has always a finite positive value. The trivial cases 
V = 0 and V-rco (v1 = 0 or vz = 0 respectively) do not give any solution of 
the shape of the fracture curve except for points P or S respectively. 

The region of the values of the activation distance a is limited from above by 
the distance between the fracture centers, d, and from below by the condition 
which must be met for the fracture curve to be formed still on the fracture 
surface. The a values lie within the limits 

( V -  1 ) ( l -  d) < u 5 d. 

We shall divide the fracture curves into four groups according to the 
magnitude of the activation distance a (Figure 2). A survey of the types 
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b C 

e d 5 

114 112 

FIGURE 2 Theoretical shapes of fracture curves in the individual groups (cf. text) 
for l/d # 0 (a/d = 3/4, Figure fa,b,d,f) and for l /d = 0 (Figure fc,e,g). Group I (a = d)- 
Figure 2a; group I1 (0 < a < d)-Figure 2b,c; group 111 (a = 0)-Figure 2d,e; group IV 
(a < 0)-Figure 2f,g. Numbers at the curves designate value of parameter V. 
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and properties of the fracture curves in the individual groups with respect to 
the parameters V and d is given in Table I. 

TABLE I 
Classification of fracture curves 

Characteristic 
Group of the group 1 Id v <  1 v =  1 V Z  1 

CI. LI c s  
I a = d  - - - # O  

0 
#O R I’ H Rs 

I1 O c a c d  ot H Q E 

111 a = O  # O  
0 

W 
La 

LZ 
LZ 

Capital letters designate type of fracture curve: R, closed curve; C, circle; H, hyperbola; 
Q, parabola; E, ellipse; L, straight line; W, the Wallner line. Indexes P,S designate the 
fracture centers around which the curve is closed; numerical indexes indicate the type of 
the straight lines (1, symmetry axis of the intercept PS; 2, semistraight line Q = T ;  3, two 
semistraight lines Q = & const.). Other symbols: t aid = 0 is valid simultaneously; 
-no solution. 

Group Z This group (Figure 2a) includes fracture curves which are formed 
with the simultaneous activation of fracture in the primary and secondary 
centers, i.e. i t  holds a = d. 

For this case, Eq. (6)  becomes 

p2 (1 - V ) / d  - 2 p  cos 4 + d = 0. (7) 

Equation (7) has a final solution only for Ild # 0. 

Cartesian coordinates 
For V # 1 it is a circle, as can be seen from the expression of Eq. (7) in the 

(1 - V2) (x’ + ~ 2 )  - 2dx + d2 = 0. (8) 
The center of the circle lies in the point (d/(l - V2) ,  0); the radius is Vd/( 1 - 
V2). At V < 1 ,  non-concentric circles are formed around the point P, and 
at V > I ,  around the point S ;  the radius ofthe circle increases with increasing 
distance between the centers, d, and with the velocities ratio V approaching 
unity. At the same time as the radius increases, the centers of the circle move 
away from the points P or S outside their connecting line. 

For V = 1, we obtain from Eq. (8) the straight line x = d/2. 
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CURVES ON FRACTURE SURFACES 155 

Group ZZ This group (Figures 2b,c, 3) includes fracture curves obtained 
during activation of the secondary fracture before the front of the primary 
fracture; that is, it holds 0 < a < d. 

FIGURE 3 Theoretical shape of fracture curve of group I1 for a/d = 1/4. 

The general shape of the curves expressed in terms of Eq. (6)  can be simplified 

1. For I/d # 0 and V = 1 (Figure 2b) Eq. (6) has the form 
only if l/d = 0 or V = 1. 

2p [ I  - (a/d) + cos 41 - a [2 - (a/d>] = 0. 

- 4 x2 (aid) [2 - (441 + 4 y2 11 - ( a / W  
+ 4 xa [2 - (a/d>] - a2 [2 - (a/d)]Z = 0 

(9) 

From representation in the Cartesian coordinates 

(10) 

it is evident that in this case the fracture curve is a hyperbola. 

and becomes 
2. For l/d = 0, and simultaneously a/d = 0 (Figure 2c) Eq. (6) is simplified 

p (V + cos 4 )  - a = 0. (1 1) 
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156 F. LEDNICK+ AND z .  PELZBAUER 

Equation (1 1) is a conic section, as can be seen from its representation in the 
Cartesian coordinates 

X Z ( V 2 -  1) + y2 v2+ 2 x a  - a2= 0. (12) 
The curves at V < 1, V = 1, and V > 1 are represented respectively by a 
hyperbola, a parabola, and an ellipse. 

Group ZZZ This group (Figure 2d,e) includes fracture curves formed if the 
secondary fracture front is activated in the place where the primary fracture 
front is passing; thus, it holds a = 0. 

Equation (6) can in this case be written as 

p ( I  - VZ)/d - 2 (V  + cos 4) = 0. (1 3) 
Equation (13) has a solution only for V 5 1. For V = 1, the solution is 
represented by a semi-straight line, 4 = T.  

1. For l/d # 0 and V < 1, the solution of Eq. (13) is represented by a 
conchoid of the circle (Pascal’s spiral) closed around the point P (Figure 2d). 
This is a common case of the Wallner lines. From the angle of the tangent 
line to the fracture curve in the point S, the velocities ratio of the fracture 
propagation, V ,  can be determined by 

lim cos+ = - V. 
p-0 

2. For I/d = 0, fracture lines are represented by straight lines (Figure 2e) 
described by the equation 

in such a case, the parameter V can be determined directly from the equation. 

Group ZV This group (Figure 2f,g) contains fracture curves which arise 
during activation of the secondary fracture behind the front of the primary 
fracture, i.e., a < 0. 

V + cos 4 = 0; (15) 

For this case, Eq. (6) can be solved only for V < 1. 
1. For l/d # 0, we obtain a fracture curve closed around both the point 

2. For l/d = 0, Eq. (6) can be simplified: 
P and S (Figure 2f). 

p (V + cos 4) - a = 0. (16) 

Equation (16) expresses one branch of the hyperbola (Figure 2g). 

Evaluation of parameters of fracture curves 

An investigation of the fracture surfaces has as its aim to give data on the 
fracture mechanism or on the material structure from the morphology of the 
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CURVES ON FRACTURE SURFACES 157 

fracture surface. The fracture curves that appear on the fracture surface 
can also be an important source of new findings. 

According to the extent of information which can be read from the fracture 
surface about the fracture curves, the region of the parameters V, a can be 
evaluated qualitatively, or these parameters can be calculated directly by 
using Eq. (6) .  To obtain qualitative limits for the parameters V ,  a from the data 
on the fracture curves, a system given in Table I1 has been set up from Table I 
and Figure 2. 

A rough estimate of the parameters is feasible already by using the common 
form of the fracture curve. If the direction can be determined on the fracture 
surface in which the crack propagates in the material, the region of the para- 
meter values can be defined with still more accuracy from the orientation of the 
fracture curve with respect to this direction. If, moreover, also the position 
of one of the fracture centers is known, it is possible in most cases to assign the 
fracture curve to the respective group with the narrowest possible delimitation 
of the parameters V,  a. However, in some cases (cf. Table 11) the position 
of both fracture centers must be known for this purpose. 

If there is a possibility to determine quantitatively the position of the centers 
of the primary and secondary fracture, P or S, respectively, the fracture 
curves allow a quantitative determination of both parameters V and a by 
the following methods : 

1st method-from the shape of the fracture curves; this is a general method 
that can be applied to all types of fracture curves. The polar coordinates 
of the fracture curve are determined from the micrograph, and the parameters 
of the curve are determined from these coordinates by computing non-linear 
regression. The parameters can be comparatively easily computed with a 
small-size computer (e.g., Hewlett-Packard). 

2nd method-from the diameters of the fracture curves; this method is 
suited for closed fracture curves only. The parameters a and V can be deter- 
mined from the coordinates of the fracture curve in the direction of the 
connecting line PS (4 = 0 or 4 = n, cf. Figure 1) by using Eq. (6). 

(a) Closed curve around the point P If pol  and poz are coordinates of the 
points of the curve for which it holds that #I = 0, we have 

v = (PO1 + PO2 - 2 4 / ( P O l  - poz), 

a = 2p02 ( P O I  - d ) / ( P O l  - poz) .  

(6) Closed curve around the point S If po and p n  are coordinates of the points 
for which 4 = 0 or 4 = n respectively, it holds 
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v = (Pn + fO) / (P ,  - PO), 

a = 2 P n  POl(P, - PO). (18) 

(c )  Closed curve around the points P and S 
points for which 4 = 0 or 4 = T respectively, it holds 

If po and pn are coordinates of the 

L' = 1 - 2d/(p0 - p,), 

a = 2dPn/(P, - PO). (1 9) 

At the same time, the agreement or disagreement of results determined by 
both methods can inform us to what extent the assumptions are futfilled 
which were used for describing the real fracture curve by Eq. (6). 

EXPERIMENTAL PART 

In order to correlate the experimental and theoretical forms of the fracture 
curves, fracture surfaces of various brittle amorphous materials (polystyrene, 
poly(methy1 methacrylate), copolymers of methyl methacrylate and alyll 
methacrylate, poly(hydroxyethy1 methacrylate), inorganic glass) were obtained 
by tensile fracture at  room temperature. The micrographs of aluminium- 
coated fracture surfaces (Figures 4 and 5) indicate the existence of most 
varied forms of fracture curves. Criteria summarized in Table I1 allows to 
delimit the region of the values of the parameters V and a. The parameters 
of some fracture curves were evaluated quantitatively from their shapes 
(1st method-chapter 2) .  The values thus obtained together with those of the 
evaluation of other fracture curves taken from the literature are summarized 
in Table 111. 

For some selected closed curves (Figure 5) the parameters were evaluated 
quantitatively by both methods, that is, from the forms and diameters of the 
curves (Table IV). 

DISCUSSION 

Comparatively very little attention has so far been paid to the solution of the 
shape of the fracture curves.2-4 The existing analytical expressions of fracture 
curves have been based on the Cartesian coordinates, and for reasons of 
simplicity special assumptions as to the fracture mechanism have been intro- 
duced; they have been restricted by certain parameter values. The analytical 
solutions for some shapes of the curves%-4.7 are special cases of our analysis 
based on Eq. (6). 
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160 F. LEDNICK+ AND z. PELZBAUER 

The shape of the fracture curve thus obtained depends on the parameters 
d, V,  a. The individual shapes of the curves can be seen in Figure 2,  which 
at the same time adequately demonstrates the transition of their shapes 
with a change in the parameter and between the groups, with the exception 
of the transition from group I1 to  group 111. The change in the sign of curvature 
in the point PO for V < 1 is obvious at a lower value of a/d from Figure 3. 

A qualitative comparison of the fracture curves observed (Figures 4 and 5 )  
with those derived (Figure 2) indicates that the majority of the theoretically 

a b 

c 
d 

e f 

FIGURE 4a-f. 
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predicted shapes can actually be detected on the fracture surfaces. Open and 
closed curves of group I1 are those most frequently found (Figure 4a-c,f); 
circles have also been found (Figure 4e), as well as intercepts of straight 
lines at the points of contact of the fracture formations (Figure 5c) character- 
istic of group I of the fracture curves. Curves of group I11 have been observed 
for both polymeric materials and inorganic glass : the Wallner lines (Figure 
4j,k) and straight lines (Figure 4g). A cardioid-like curve (Figure 4d,h) has 
also been found; it can belong to group 11, 111, or IV. Identification of this 
curve would require an unambiguous determination of the position of the 
fracture centres (cf. Table 11). 

The fulfilment of assumptions used for the description of the fracture 
curves by means of Eq. (6) can be established by verifying that both the initial 
and the final part of the fracture curve is formed under the same conditions. 
To test this finding, a comparison must be made of the parameter values 
of curves calculated by the first method (from the shape of the curve) applied 

h 

k 

FIGURE 4g-k. 

FIGURE 4 Shapes of fracture curves on fracture surfaces of brittle amorphous materials. 
a, poly(methy1 methacrylate); b-f, polystyrene; g, poly(hydroxyethy1 methacrylate); 
h, polystyrene; j, copolymer of methyl methacrylate and alyll methaciylate; k,  inorganic 
glass. The bar scale represents 25 ym. 
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to a part of the fracture curve adjacent to the primary fracture, and also 
by the second method (from the diameter) which involves the beginning 
and the end of the curve. In this way, curves from Figure 5 (Table IV) were 
evaluated. The shape of curve 1 given in Figure 5a resembles the shape which 
is theoretically possible; Table IV also shows a very good agreement of the 
parameter values. Curves 2,3, Figure 5b,c reveal at the first glance the difference 
of the shapes from those theoretically predicted ; the parameter values calcu- 
lated by both methods also differ considerably. It can be calculated from the 
shape of parts of the curves around S adjacent to the primary centre P that the 
curve should theoretically be closed at a shorter (curve 2, Figure 5b) or a 
longer (curve 3, Figure 5c) distance from the fracture centres than the actual 

h 

FIGURE Sa-b. 
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distance. This fact can be explained, in the first case, either by a sudden 
slowing-down of the primary fracture front or by an acceleration of the 
secondary front; in the second case, the explanation should probably be 
sought in an acceleration of the primary fracture. 

This phenomenon of a sudden change in the velocity of propagation 
of the fracture surfaces has been observed in some cases only. In most cases, the 
shapes of the fracture curves resemble those theoretically derived, which 
together with other data found in the literatureI2 indicates that the assumption 
of the propagation of fracture fronts at constant velocities may be justified. 

The knowledge of the parameter values of the fracture curves can give 
important information about the mechanism of the fracture formation. 
As yet, this has been done by following po depending on the distance of the 
respective fracture curve starting with the beginning from which the crack 
propagates in the material.11 However, po has no unambiguous physical 
interpretation (cf. Eqs. (17)-(19)). We believe that a more exact picture about 
the fracture propagation is offered by the parameters V,  a, d, each of which 
can characterize a certain feature of the fracture process. The parameter d is 
proportional to the density of the original and fracture-initiated defects in the 
sample, while the activation distance a indicates the critical character of the 

C 

FIGURE 5c. 

FIGURE 5 Closed curves whose parameters are evaluated by two methods (fracture 
surface of polystyrene). Evaluated parameters of curves are given in Table IV. The bar 
scale represents 25 pm. 
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TABLE 111 
Parameters of experimental fracture curves 

Poly(methy1 methacrylate) 
1.18 43.2 
1.14 26.0 
1.10 27.5 
1.07 32.1 
1.04 11.9 
1.03 34.4 
0.93 20.5 

Polystyrene 
1.65a 24.0a 
1.62b 51.2b 
1 . 1 5 C  0.89c 

Glass 
0.65d 
0.27e ..oe 

Curve 1 ,  Figure 5a; * Figure 4b; 
Ref. 6, Figure 2; e Figure 4k. 

Ref. 8, Figure 10; 

TABLE IV 
Comparison of evaluation results of closed fracture curves 

obtained by two methods 

1st method- 2nd method- 
Parameter from curve shape from curve diameter 

Curve 1 (Figure 5a) 
1.3 1.6 
19 21 
0.61 0.68 

Curve 2 (Figure 5b) 
4.0 1.5 
62 32 
0.06 0.03 

Curve 3 (Figure 5c) 
2.2 7.1 
26 
0.7 

54 
1.5 
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defects. The velocities ratio Y and the values of the other parameters of the 
subsequent fractures whose centres are situated on a common straight line 
PS allow to draw a conclusion about the change in the velocity of propagation 
of the fracture crack. 

It follows from the established values of the parameters V, a from the 
selected fracture curves of various materials (Table 111) that the values a are 
positive, and approximately zero in the case of the Wallner lines. It is note- 
worthy that with increasing hardness of the materials (in the order poly- 
styrene, poly(methy1 methacrylate), glass), V on the average decreases. This 
phenomenon is probably connected with the different rate of relaxation, of the 
material which appears during healing of the secondary fraction. However, a 
detailed explanation including the relationships between the parameters of the 
curves, on the one hand, and the material constants and the fracture conditions, 
on the other, calls for further investigation. 
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